

Randomized Algorithms (RAs)
■ Randomized algorithms are frequently used in many areas of engineering, computer science, physics, finance, optimization,but their appearance in systems and control is mostly limited to Monte Carlo simulations
■ Main objective of this mini-course: Introduction to rigorous study of RAs for uncertain systems and control, with specific applications
NATO Lecture Series SCI-195 @RT 2008 6

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE MAY 2008	2 DEPORT TYPE				RED 8 to 00-00-2008
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
_	ithms for Systems a	5b. GRANT NUMBER			
Applications			5c. PROGRAM E	ELEMENT NUMBER	
6. AUTHOR(S)		5d. PROJECT NUMBER			
				5e. TASK NUME	BER
				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AE enico di Torino,Cors		zzi ,24 - 10129	8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A		10. SPONSOR/M	ONITOR'S ACRONYM(S)	
		11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited			
Series SCI-195 on A	OTES 23. Presented at the Advanced Autonom AV Applications held	ous Formation Con	trol and Trajecto	ry Managem	ent Techniques for
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT b. ABSTRACT c. THIS PAGE Same as unclassified unclassified unclassified Report (SA)				OF PAGES 31	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Randomized Algorithms (RAs)

- Combinatorial optimization, computational geometry
- Examples: Data structuring, search trees, graph algorithms, sorting (RQS), ...
- Motion and path planning problems
- Mathematics of finance: Computation of path integrals
- Bioinformatics (string matching problems)

NATO Lecture Series SCI-195

- Uncertainty has been always a critical issue in control theory and applications
- First methods to deal with uncertainty were based on a stochastic approach
- Optimal control: LQG and Kalman filter
- Since early 80's alternative deterministic approach (worst-case or robust) has been proposed

NATO Lecture Series SCI-195

Robustness

- Major stepping stone in 1981: Formulation of the \mathcal{H}_{∞} problem by George Zames
- Various "robust" methods to handle uncertainty now exist: Structured singular values, Kharitonov, optimization-based (LMI), *l*-one optimal control, quantitative feedback theory (QFT)

NATOL corner Series SCL 108 @RT 2008

Robustness

- Late 80's and early 90's: Robust control theory became a well-assessed area
- Successful industrial applications in aerospace, chemical, electrical, mechanical engineering, ...
- However, ...

O Loomes Series SCI 108 @RT 2008

Limitations of Robust Control - 1

- Researchers realized some drawbacks of robust control
- Consider uncertainty Δ bounded in a set \mathcal{B} of radius ρ . Largest value of ρ such that the system is stable for all $\Delta \in \mathcal{B}$ is called (worst-case) robustness margin
- Conservatism: Worst case robustness margin may be small
- Discontinuity: Worst case robustness margin may be discontinuous wrt problem data

NATO Lecture Series SCI-19:

@RT 2008

IEIT-CNR

Limitations of Robust Control - 2

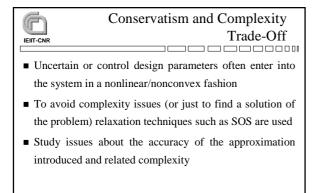
- Computational Complexity: Worst case robustness is often \mathcal{NP} -hard (not solvable in polynomial time unless $\mathcal{P} = \mathcal{NP}$)^[1]
- Various robustness problems are *NP*-hard
 - static output feedback
 - structured singular value
 - stability of interval matrices

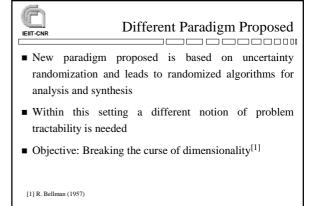
[1] V. Blondel and J.N. Tsitsiklis (2000)

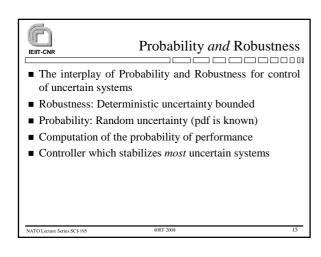
NATO Lecture Series SCI-195

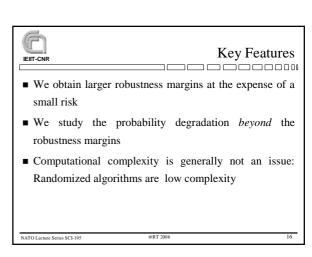
@RT 2008

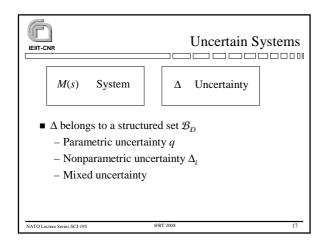
2

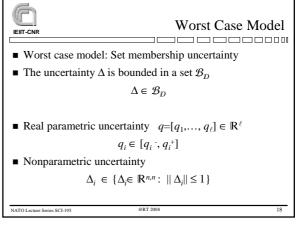


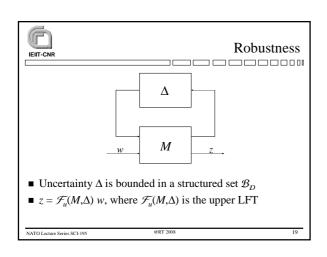


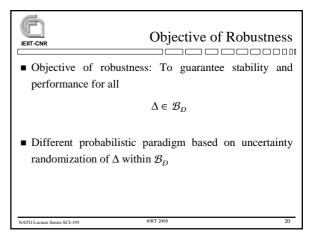


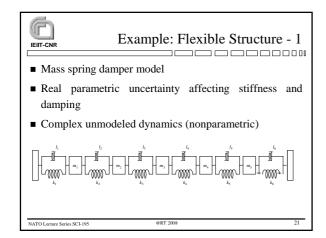


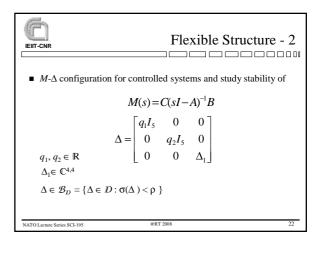


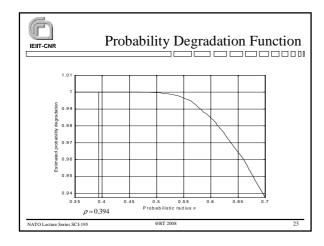


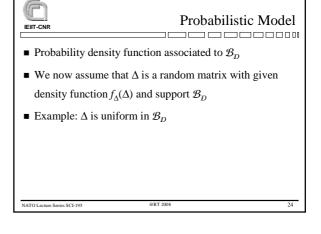












Uniform Density

■ Take $f_{\Delta}(\Delta) = \mathcal{U}[\mathcal{B}_D]$ (uniform density within \mathcal{B}_D)

$$\mathcal{U}[\mathcal{B}_{\!\scriptscriptstyle D}] = \begin{cases} \frac{1}{vol(\mathcal{B}_{\!\scriptscriptstyle D})} & \text{if } \Delta \in \mathcal{B}_{\!\scriptscriptstyle D} \\ 0 & \text{otherwise} \end{cases}$$

■ In this case, for a subset $\mathcal{S} \subseteq \mathcal{B}_D$

$$\Pr\{\Delta \in \mathcal{S}\} = \frac{\int_{\mathcal{S}} d\Delta}{vol(\mathcal{B}_D)} = \frac{vol(\mathcal{S})}{vol(\mathcal{B}_D)}$$

NATO Lecture Series SCI-195

GDT 2000

Performance Function

- In classical robustness we guarantee that a certain performance requirement is attained for all $\Delta \in \mathcal{B}_D$
- This can be stated in terms of a performance function

$$J = J(\Delta)$$

■ Examples: \mathcal{H}_{∞} performance and robust stability

NATO Lecture Series SCI-195

@RT 2008

Example: \mathcal{H}_{∞} Performance - 1

$$J(\Delta) = || \mathcal{F}_{u}(M, \Delta) ||_{\infty}$$

■ For given γ >0, check if

$$J(\Delta) < \gamma$$

for all Δ in \mathcal{B}_D

NATO Lecture Series SCI-195

@RT 200

Example: $\mathcal{H}_{\scriptscriptstyle\infty}$ Performance - 2

lacktriangle Continuous time SISO systems with real parametric uncertainty q with upper LFT

$$\mathcal{F}_{u}(M,\Delta) = \mathcal{F}_{u}(M,q) =$$

$$\frac{0.5q_1q_2s+10^{-5}q_1}{(10^{-5}+0.05q_2)s^2+\left(0.00102+0.5q_2\right)s+(2\cdot 10^{-5}+0.5q_1^2)}$$

where $q_1 \in \, [0.2,\, 0.6]$ and $q_2 \in \, [10^{\text{-5}}, 3 \cdot 10^{\text{-5}}]$

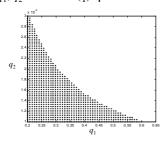
- Letting $J(q) = \| \mathcal{F}_u(M,q) \|_{\infty}$, we choose $\gamma = 0.003$
- Check if $J(q) < \gamma$ for all q in these intervals

NATO Lecture Series SCI-195

@RT 2008

Example: \mathcal{H}_{∞} Performance - 3

■ The set of q_1 , q_2 for which $J(q) < \gamma$ is shown below



NATO Lecture Series SCI-195

@RT 2008

Example^[1]: Robust Stability - 1

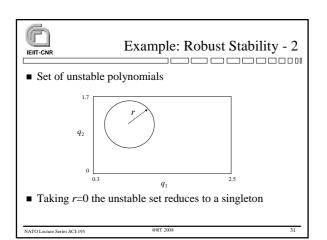
■ Consider the closed loop uncertain polynomial

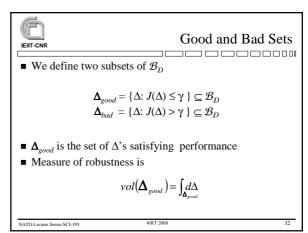
$$p(s,q) = (1+r^2+6q_1+6q_2+2q_1q_2)+(q_1+q_2+3)s+(q_1+q_2+1)s^2+s^3$$
 where $q_1 \in [0.3, 2.5], q_2 \in [0,1.7]$ and r =0.5

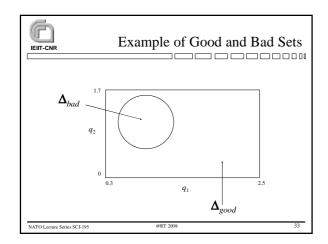
• Check stability for all q in these intervals

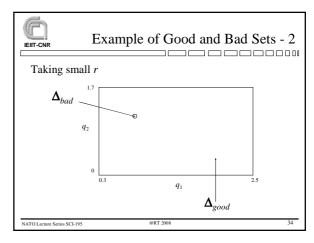
[1] G. Truxal (1961)

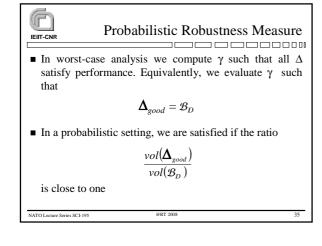
NATO Lecture Series SCI-195

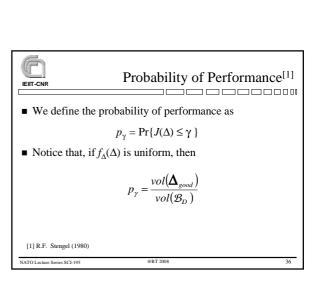












Example: Closed-Form Computation

- For Truxal's example, we compute p_{γ} in closed-form
- For uniform distribution, we have

$$vol(\Delta_{good}) = 3.74 - \pi r^2$$

 $vol(\mathcal{B}_D) = 3.74$

NATO Lecture Series SCI-195

®RT 2008

IEIT-CNR

P1: Performance Verification

■ For given performance level γ , check whether

$$J(\Delta) \le \gamma$$

for all Δ in \mathcal{B}_D

■ Compute the probability of performance p_{γ}

NATO Lecture Series SCI-195 @RT 2008 38

P2: Worst-Case Performance

■ Find J_{max} such that

$$J_{\max} = \max_{\Delta \in \mathcal{B}_D} J(\Delta)$$

■ Compute the worst case performance (or its probabilistic counterpart)

NATO Lecture Series SCI-195

@RT 2008

Randomized Algorithms for Analysis

O Lecture Series SCI-195

@PT 2009

Randomized Algorithm: Definition

- Randomized Algorithm (RA): An algorithm that makes random choices during its execution to produce a result
- Example of a "random choice" is a coin toss

head

or

tails

NATO Lecture Series SCI-195 @RT 2008 41

Randomized Algorithm: Definition

- Randomized Algorithm (RA): An algorithm that makes random choices during its execution to produce a result
- For hybrid systems, "random choices" could be switching between different states or logical operations
- For uncertain systems, "random choices" require (vector or matrix) random sample generation

NATO Lecture Series SCI-195

Monte Carlo Randomized Algorithm

■ Monte Carlo Randomized Algorithm (MCRA): A randomized algorithm that may produce incorrect results, but with bounded error probability

NATO Lecture Series	ect.	105

ont:

Las Vegas Randomized Algorithm

■ Las Vegas Randomized Algorithm (LVRA): A randomized algorithm that always produces correct results, the only variation from one run to another is the running time

NATO Lecture Series SCL105

@RT 2003

Randomization of Uncertain Systems

- lacktriangle Consider random uncertainty Δ , associated pdf and bounding set B
- ∆ is a (real or complex) random vector (parametric uncertainty) or matrix (nonparametric uncertainty)
- Consider a performance function

$$J(\Delta): B \to \mathbf{R}$$

and level $\gamma > 0$

■ Define worst case and average performance

$$J_{\max} = \max_{\Delta \in B} J(\Delta)$$

 $J_{\text{ave}} = E_{\Lambda}(J(\Delta))$

NATO Lecture Series SCI-195

@RT 2008

Example: H_{∞} Performance - 1

■ H_{∞} performance of sensitivity function

$$B = \{\Delta : \Delta = \text{bdiag } (\Delta_1, \dots, \Delta_q) \in \mathbf{F}^{n,m}, \, \sigma_{max}(\Delta) \leq \rho\}$$

$$S(s,\Delta) = 1/(1 + P(s,\Delta) C(s))$$

$$J(\Delta) = ||S(s,\Delta)||_{\infty}$$

NATO Lautura Sarias SCI 105

@RT 2008

Example: H_{∞} Performance - 2

■ H_{∞} performance of sensitivity function

$$\begin{split} B &= \{\Delta \colon \Delta = \text{bdiag } (\Delta_1, \dots, \Delta_q) \in \mathbb{F}^{n,m}, \, \sigma_{\max}(\Delta) \leq \rho \} \\ S(s, \Delta) &= 1/(1 + P(s, \Delta) \, C(s)) \\ J(\Delta) &= \|S(s, \Delta)\|_{\infty} \end{split}$$

■ Objective: Check if

$$J_{\max} \leqslant \gamma$$
 and $J_{\text{ave}} \leqslant \gamma$

■ These are uncertain decision problems

NATO Lecture Series SCI-195

@RT 2008

Two Problem Instances

■ We have two problem instances for worst case performance

$$J_{\mathrm{max}} \leqslant \gamma$$
 and $J_{\mathrm{max}} > \gamma$

and two problem instances for average case performance

$$J_{\mathrm{ave}} \leqslant \gamma \quad \mathrm{and} \quad J_{\mathrm{ave}} > \gamma$$

■ This leads to one-sided and two-sided MCRA

NATO Lecture Series SCI-195

One-Sided MCRA

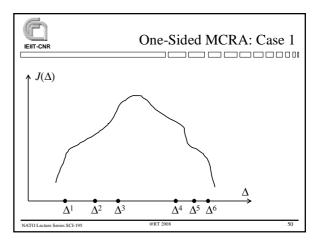
- One-sided MCRA: Always provide a correct solution in one of the instances (they may provide a wrong solution in the other instance)
- Consider the empirical maximum

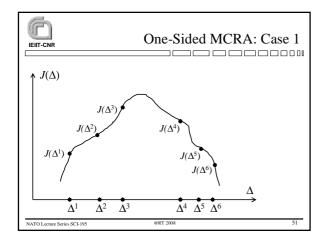
$$\hat{J}_{\max} = \max_{i=1,\dots,N} J(\Delta^i)$$

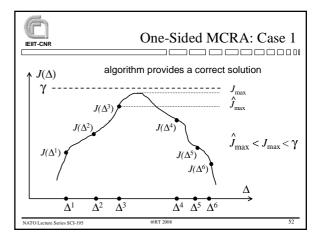
where Δ^i are random samples and N is the sample size

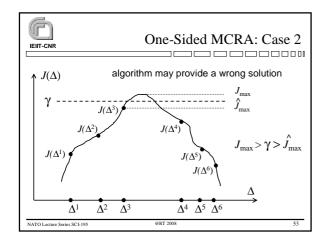
■ Check if $\hat{J}_{max} \leq \gamma$ or $\hat{J}_{max} > \gamma$

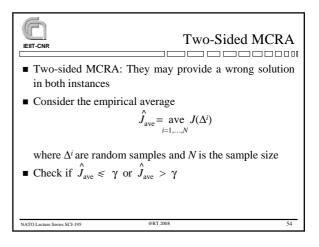
NATO Lecture Series SCI-195

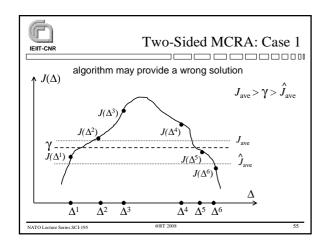


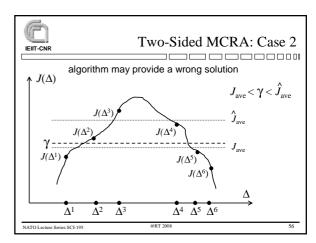








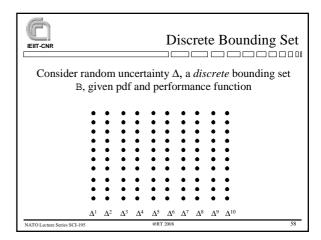




Las Vegas Randomized Algorithms

- We also have zero-sided (Las Vegas) randomized algorithms
- Las Vegas Randomized Algorithm (LVRA): Always give the correct solution
- The solution obtained with a LVRA is probabilistic, so "always" means with probability one
- Running time may be different from one run to another
- We can study the average running time

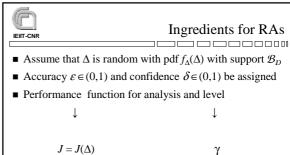
NATO Lecture Series SCI-195 @RT 2008 57



The Las Vegas Viewpoint

- Consider discrete random variables
- lacktriangle The sample space is discrete and M^N possible choices can be made
- In the binary case we have 2^N
- Finding maximum requires ordering the 2^N choices
- Las Vegas can be used for ordering real numbers
- Example: Randomized Quick Sort for sorting real numbers (classical in computer science)

NATO Lecture Series SCI-195 @RT 2008 59



Randomized Algorithms for Analysis ______

- Two classes of randomized algorithms for probabilistic robust performance analysis
- P1: Performance verification (compute p_{γ})
- P2: Worst-case performance (compute J_{max})
- Both are based on uncertainty randomization of Δ
- Bounds on the sample size are obtained

Randomized Algorithms - 2

- \blacksquare We estimate p_{γ} by means of a randomized algorithm
- First, we generate N i.i.d. samples

$$\Delta^1, \Delta^2, ..., \Delta^N \in \mathcal{B}_D$$

according to the density f_{Δ}

■ We evaluate $J(\Delta^1), J(\Delta^2), ..., J(\Delta^N)$

Empirical Probability

■ Construct an indicator function

$$I(\Delta^i) = \begin{cases} 1 & \text{if } J(\Delta^i) \le \gamma \\ 0 & \text{otherwise} \end{cases}$$
• An estimate of p_{γ} is the empirical probability

$$\hat{p}_N = \frac{1}{N} \sum_{i=1}^{N} I(\Delta^i) = \frac{N_{good}}{N}$$

where N_{good} is the number of samples such that $J(\Delta^i) \leq \gamma$

A Reliable Estimate ____

■ The empirical probability is a reliable estimate if

$$|p_{\gamma} - \hat{p}_{N}| = |\Pr\{J(\Delta) \le \gamma\} - \hat{p}_{N}| \le \varepsilon$$

■ Find the minimum *N* such that

$$\Pr\{|p_{\gamma} - \hat{p}_{N}| \leq \varepsilon\} \geq 1 - \delta$$

where $\varepsilon \in (0,1)$ and $\delta \in (0,1)$

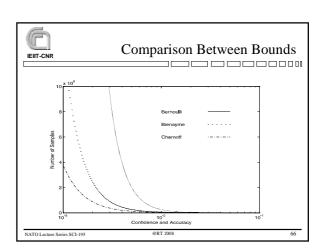
Chernoff Bound^[1]

■ For any $\varepsilon \in (0,1)$ and $\delta \in (0,1)$, if

$$N \ge \frac{\log \frac{2}{\delta}}{2\varepsilon^2}$$

then

$$\Pr\{|p_{\gamma} - \hat{p}_{N}| \leq \varepsilon\} \geq 1 - \delta$$



Chernoff Bound

- Remark: Chernoff bound improves upon other bounds such as Bernoulli (Law of Large Numbers)
- Dependence on $1/\delta$ is logarithmic
- Dependence on $1/\varepsilon$ is quadratic

ε	0.1%	0.1%	0.5%	0.5%
$1-\delta$	99.9%	99.5%	99.9%	99.5%
N	3.9.106	3.0.106	1.6.106	1.2.105

.....

@RT 2008

Computational Complexity of RAs

- RAs are efficient (polynomial-time) because
- 1. Random sample generation of Δ^i can be performed in polynomial-time
- 2. Cost associated with the evaluation of $J(\Delta^i)$ for fixed Δ^i is polynomial-time
- 3. Sample size is polynomial in the problem size and probabilistic levels arepsilon and δ

NATO Lecture Series SCL 195

@RT 2008

1. Random Sample Generation

- Random number generation (RNG): Linear and nonlinear methods for uniform generation in [0,1) such as Fibonacci, feedback shift register, BBS, MT, ...
- Non-uniform univariate random variables: Suitable functional transformations (e.g., the inversion method)
- The problem is much harder: Multivariate generation of samples of Δ with pdf $f_{\Delta}(\Delta)$ and support \mathcal{B}_D
- It can be resolved in polynomial-time

NATO Lecture Series SCI-19

@RT 200

2. Cost of Checking Stability

■ Consider a polynomial

$$p(s,a) = a_0 + a_1 s + \dots + a_n s^n$$

■ To check left half plane stability we can use the Routh test. The number of multiplications needed is

$$\frac{n^2}{4}$$
 for *n* even

$$\frac{n^2-1}{4}$$
 for n odd

- The number of divisions and additions is equal to this number
- We conclude that checking stability is $O(n^2)$

NATO Lecture Series SCI-195

@RT 2008

3. Bounds on the Sample Size

- Chernoff bound is independent on the size of \mathcal{B}_D , on the structure D on the number of blocks, on the pdf $f_{\Lambda}(\Delta)$
- It depends only on δ and ϵ
- Same comments can be made for other bounds such as Bernoulli

NATO Lecture Series SCI-19

@RT 2008

Worst-Case Performance

■ Recall that

$$J_{\max} = \max_{\Delta \in \mathcal{B}_D} J(\Delta)$$

■ Generate N i.i.d. samples

$$\Delta^1, \Delta^2, ..., \Delta^N \in \mathcal{B}_D$$

according to the density f_{Δ}

■ Compute the empirical maximum

$$\hat{J}_{\max} = \max_{i=1,\dots,N} J(\Delta^i)$$

NATO Lecture Series SCI-195

Worst-Case Bound (Log-over-Log)^[1]

■ For any $\varepsilon \in (0,1)$ and $\delta \in (0,1)$, if

$$N \ge \frac{\log \frac{1}{\delta}}{\log \frac{1}{1-\varepsilon}}$$

then

$$\Pr\{\Pr\{J(\Delta) > \hat{J}_N\} \le \varepsilon\} \ge 1 - \delta$$

[1] R. Tempo, E. W. Bai and F. Dabbene (1996)

NATO Lecture Series SCI-195

Comparison and Comments

- Number of samples is much smaller than Chernoff
- Bound is a specific instance of the fpras (fully polynomial randomized approximated scheme) theory
- Dependence on $1/\varepsilon$ is basically linear $\left(\log \frac{1}{1-\varepsilon} \approx \varepsilon\right)$

ε	0.1%	0.1%	0.5%	0.5%	0.01%	0.001%
1-δ	99.9%	99.5%	99.9%	99.5%	99.99%	99.999%
N	$6.91 \cdot 10^{3}$	5.30·10 ³	$1.38 \cdot 10^3$	$1.06 \cdot 10^3$	$9.21 \cdot 10^4$	1.16.106

Volumetric Interpretation

_____ ■ In the case of $f_{\Delta}(\Delta)$ uniform, we have

$$\Pr\{J(\Delta) > \hat{J}_N\} = \frac{vol(\Delta_{bad})}{vol(\mathcal{B}_D)}$$

■ Therefore

$$\Pr{\Pr{J(\Delta) > \hat{J}_N} \le \varepsilon} \ge 1 - \delta$$

is equivalent to

$$\Pr\{vol(\boldsymbol{\Delta}_{bad}) \leq \varepsilon vol(\mathcal{B}_D)\} \geq 1 - \delta$$

Confidence Intervals

■ The Chernoff and worst-case bounds can be computed *a*priori and provide an explicit functional relation

$$N = N(\varepsilon, \delta)$$

- The sample size obtained with the confidence intervals is not explicit
- Given $\delta \in (0,1)$, upper and lower confidence intervals p_L and p_U are such that $\Pr\{p_L \le p_\gamma \le p_U\} = 1 - \delta$

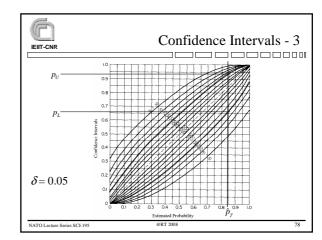
Confidence Intervals - 2 _____

■ The probabilities p_L and p_U can be computed a posteriori when the value of N_{good} is known, solving equations of the type

$$\begin{split} \sum_{k=N_{good}}^{N} \binom{N}{k} p_L^k (1-p_L)^{N-k} &= \delta_L \\ \sum_{k=0}^{N_{good}} \binom{N}{k} p_U^k (1-p_U)^{N-k} &= \delta_U \end{split}$$

$$\sum_{k=0}^{N_{good}} \binom{N}{k} p_U^k \left(1 - p_U\right)^{N-k} = \delta_U$$

with $\delta_L + \delta_U = \delta$



Statistical Learning Theory ______

■ The Chernoff Bound studies the problem $\Pr\{|p_{\gamma} - \hat{p}_{N}| \le \varepsilon\} \ge 1 - \delta$

where $p_{\gamma} = \Pr\{J(\Delta) \le \gamma \}$

- \blacksquare Performance function J is fixed
- Statistical Learning Theory computes bounds on the sample size for the problem

 $\Pr\{|\Pr(J(\Delta) \leq \gamma) - \hat{p}_N| \leq \varepsilon, \forall J \in \mathcal{J}\} \geq 1 - \delta$ where $\boldsymbol{\mathcal{J}}$ is a given class of functions

NATO Lecture Series SCI-195

VC and P-dimension^[1,2]

- Statistical Learning Theory aims at studying uniform Law of Large Numbers
- The bounds obtained depend on quantities called VCdimension (if J is a binary valued function), or Pdimension (if J is a continuous valued function)
- VC and P-dimension are measures of the problem complexity

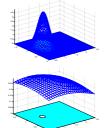
[1] M. Vidyasagar (1997)

[2] E.D. Sontag (1998)

NATO Lecture Series SCI-195

Choice of the Distribution - 1

- The probability $Pr\{\Delta \in \mathcal{S}\}$ depends on $f_{\Lambda}(\Delta)$
- It may vary between 0 and 1 depending on the $\operatorname{pdf} f_{\Lambda}(\Delta)$



Choice of the Distribution - 2

- The bounds discussed are independent on the choice of the distribution but for computing $\Pr\{J(\Delta) \le \gamma\}$ we need to know the distribution $f_{\Lambda}(\Delta)$
- Some research has been done in order to find the worst-case distribution in a certain class^[1]
- Uniform distribution is the worst-case if a certain target is convex and centrally symmetric

[1] B. R. Barmish and C. M. Lagoa (1997)

IEIIT-CNR

Choice of the Distribution - 3 _____

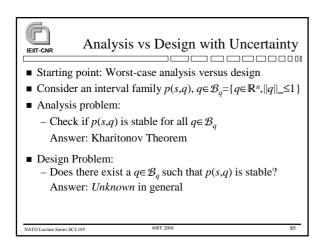
■ Minimax properties of the uniform distribution have been studied[1]

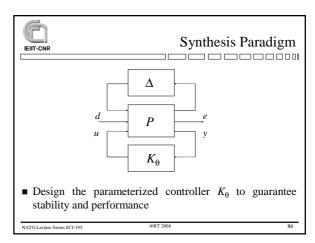
[1] E. W. Bai, R. Tempo and M. Fu (1998)

NATO Lecture Series SCI-195

15	3
34	_
100	
IEIIT	-CNF

Probabilistic Robust Synthesis





Synthesis Performance Function

- Recall that the parameterized controller is K_{Θ}
- We replace $J(\Delta)$ with a synthesis performance function

$$J = J(\Delta, \theta)$$

where $\theta \in \Theta$ represents the controller parameters to be determined and their bounding set

NATO Lecture Series SCI-195

@RT 2008

Randomized Algorithms for Synthesis

- Two classes of RAs for probabilistic synthesis
- Average performance synthesis^[1]
- Based on expected value minimization
- Use of Statistical Learning Theory results
- Very general problems can be handled
- Existing bounds are very conservative and controller randomization is required
- Ongoing research aiming at major reduction of sample size

[1] M. Vidyasagar (1998

NATO Lecture Series SCI-195

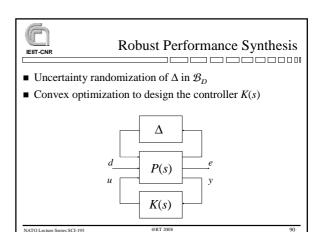
@RT 2008

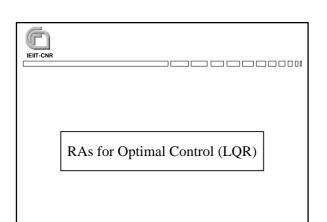
Randomized Algorithms for Synthesis

- Robust performance synthesis^[1]
- Problem reformulation as robust feasibility
- Only convex problems can be handled
- Finite-time convergence with probability one is obtained

[1]B. Polyak and R. Tempo (2001)

NATO Lecture Series SCI-19:





Uncertain Systems in State Space

■ We consider a state space description of the uncertain system

$$\dot{x}(t) = A(\Delta)x(t) + Bu(t)$$

with $x(0)=x_0$; $x \in \mathbb{R}^n$; $u \in \mathbb{R}^m$, $\Delta \in \mathcal{B}_D$

■ For example, $A(\Delta)$ is an interval matrix with bounded entries $a_{ii}^- \le a_{ii} \le a_{ii}^+$

NATO Lecture Series SCI-195

@RT 2008

Interval and Vertex Matrices

- That is, a_{ik} ranges in the interval for all i, k

$$|a_{ik} - a_{ik}^*| \leq w_{ik}$$

■ We consider interval uncertainty A (i.e. when $\Delta \in \mathcal{B}_D$)

where a_{ik}^{*} are nominal values and w_{ik} are weights

■ Define the $N = 2^{n^2}$ vertex matrices $A^1, A^2, ..., A^N$

$$a_{ik}={a_{ik}}^*+w_{ik}\quad\text{or}\quad a_{ik}={a_{ik}}^*-w_{ik}$$
 for all $i,\,k=1,\,2,\,\ldots,\,n$

NATO Lecture Series SCI-195 @RT 2008

Common Lyapunov Functions

■ Given matrices *A**, *W* and feedback *K*, find a *common* quadratic Lyapunov function *Q* > 0 for the system

$$\dot{x}(t) = (A + B K) x(t)$$
 for all $A \in A$

■ Find Q > 0 such that

$$L(Q, A) = (A+BK)^T Q + Q (A+BK) < 0$$
 for all $A \in A$

■ Equivalently, find Q > 0 such that

$$\lambda_{max} L(Q, A) < 0$$
 for all $A \in A$

NATO Lecture Series SCI-195

@RT 2008

Lyapunov Stability of Interval Systems

- Quadratic Lyapunov stability analysis and synthesis of interval systems are NP-hard problems
- In principle, they can be solved in one-shot with convex optimization, but the number of constraints is exponential
- We can use relaxation (e.g. $\pi/2$ Theorem^[1]) or randomization

[1] Yu. Nesterov (1997)

NATO Lecture Series SCI-195

@RT 2008

Vertex Solution

- Due to convexity, it suffices to study *L(Q, A)* < 0 for all vertex matrices^[1]
- Question: Do we really need to check all the vertex matrices $(N = 2^{n^2})$?

[1] H.P. Horisberger, P.R. Belanger (1976)

NATO Lecture Series SCI-195

Vertex Reduction

- Answer: It suffices to check "only" a subset of 2²ⁿ vertex matrices^[1]
- This is still exponential (the problem is NP-hard), but it leads to a major computational improvement for medium size problems (e.g. *n* = 8 or 10)
- For example, for n=8, N is of the order 10^5 (instead of 10^{19})

[1] T. Alamo, R. Tempo, D. Rodriguez, E.F. Camacho (2007)

NATO Lecture Series SCL 195

GDT 2000

Diagonal Matrices and Generalizations

- Transform the original problem from full square matrices A to diagonal matrices $Z \in \mathbb{R}^{2n,2n}$
- It suffices to check the vertices of Z
- lacktriangle Extensions for L_2 -gain minimization and other related LMI problems
- Generalizations for multiaffine interval systems

NATO Lecture Series SCI-195

@RT 2008

Las Vegas Randomized Algorithm

- We may perform randomization of the $N = 2^{n^2}$ vertices (in the worst case)
- If we select the vertices in random order according to a given pdf, we have a LVRA

NATO Lecture Series SCI-195

@RT 2008

Probabilistic Solution

■ Randomly generate $A^1,...,A^N$. Then, check if the Lyapunov equation

$$A^iQ + Q(A^i)^T \le 0$$

is feasible for i=1,...,N and find a common solution $Q=Q^T>0$

lacktriangle Critical problem: Even if N is relatively small, this is a hard computational problem

NATO Lecture Series SCI-195

@RT 2008

Sequential Algorithm

- Key point: Sequential algorithm which deals with one constraint at each step
- \blacksquare At step k we have

Phase 1: Uncertainty randomization of Δ

Phase 2: Gradient algorithm and projection

■ Final result: Find a solution $Q=Q^T>0$ with probability one in a finite number of steps

NATO Lecture Series SCI-195

@RT 2008

Definition

■ Let \mathcal{E}_n be an Euclidean space

$$\mathcal{E}_n = \left\{ A = A^T \in \mathbb{R}^n, ||A|| = \sqrt{\sum_{i,k=1}^n a_{1k}^2} \right\}$$

and C be the cone of positive semi-definite matrices

$$C = \{ A \in \mathcal{E}_n : A \ge 0 \}$$

NATO Lecture Series SCI-195

Projection on a Cone

■ For any real symmetric matrix A we define the projection $[A]^+ \in C$ as

$$[A]^+ = \arg\min_{X \in C} ||A - X||$$

- The projection can be computed through the eigenvalue decomposition $A=T\Lambda T^T$
- Then

$$[A]^{+} = T\Lambda^{+}T^{T}$$

where $\lambda_i^+ = \max \{\lambda_i, 0\}$

.....

@RT 2008

Phase 1: Uncertainty Randomization

- Uncertainty randomization: Generate $\Delta^k \in \mathcal{B}_D$
- Then, for guaranteed cost we obtain the Lyapunov equation

$$A(\Delta^k)Q + QA^T(\Delta^k) \leq 0$$

NATO Lecture Series SCI-195

@RT 2008

Matrix Valued Function

■ Define a matrix valued function

$$V(Q, \Delta^k) = A(\Delta^k)Q + QA^T(\Delta^k)$$

and a scalar function

$$v(Q, \Delta^k) = \| [V(Q, \Delta^k)]^{\dagger} \|$$

where $\|\cdot\|$ is the Frobenius norm

■ We can also take the maximum eigenvalue of $V(Q, \Delta^k)$

NATO Lecture Series SCI-195

@RT 200

Phase 2: Gradient Algorithm

■ We write

$$Q^{k+1} = \begin{cases} \left[Q^k - \mu^k \partial_Q \left\{ \nu \left(Q^k, \Delta^k \right) \right\} \right]^{\dagger} & \text{if } \nu \left(Q^k, \Delta^k \right) > 0 \\ Q^k & \text{otherwise} \end{cases}$$

where ∂_Q is the subgradient and the stepsize μ^k is

$$\mu^{k} = \frac{v\left(Q^{k}, \Delta^{k}\right) + r\left\|\partial_{Q}\left\{v\left(Q^{k}, \Delta^{k}\right)\right\}\right\|}{\left\|\partial_{Q}\left\{v\left(Q^{k}, \Delta^{k}\right)\right\}\right\|^{2}}$$

and r>0 is a parameter

NATO Lecture Series SCI-195

@RT 2008

Closed-form Gradient Computation

■ The function $\nu(Q, \Delta^k)$ is convex in Q and its subgradient can be easily computed in a closed form

NATO Lecture Series SCI-19:

@RT 2008

Theorem^[1]

- Assumption: Every open subset of \mathcal{B}_D has positive
- Theorem: A solution Q, if it exists, is found in a finite number of steps with probability one
- Idea of proof: The distance of Q^k from the solution set decreases at each correction step

[1] B.T. Polyak and R. Tempo (2001)

NATO Lecture Series SCI-195

Example^[1]

- We study a multivariable example for the design of a controller for the lateral motion of an aircraft.
- The model consists of four states and two inputs

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & L_{\rho} & L_{\beta} & L_{r} \\ \frac{g}{\sqrt{r}} & 0 & Y_{\beta} & -1 \\ N_{\beta}(\frac{g}{\sqrt{r}}) & N_{\rho} & N_{\beta} + N_{\beta}Y_{\beta} & N_{r} - N_{\beta} \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 0 & -3.91 \\ 0.035 & 0 \\ -2.53 & 0.31 \end{bmatrix} u(t)$$

[1] B.D.O. Anderson and J.B. Moore (1971)

NATO Lecture Series SCI-195

Example - 2 ____

- The state variables are
 - $-x_1$ bank angle
 - $-x_2$ derivative of bank angle
 - $-x_3$ sideslip angle
 - x_4 jaw rate
- The control inputs are
 - $-u_1$ rudder deflection
 - u2 aileron deflection

Example - 3

- ____ values: $L_p = -2.93$, $L_{\beta} = -4.75$, $L_r = 0.78$, Nominal g/V=0.086, $Y_{\beta}=-0.11$, $N_{\beta}=0.1$, $N_{\rho}=-0.042$, $N_{\beta}=2.601$, $N_r = -0.29$
- Perturbed matrix $A(\Delta)$: each parameter can take values in a range of ±15% of the nominal value
- Quadratic stability (γ =0): take R=I and S=0.01I
- Remark: $A(\Delta)$ is multiaffine in the uncertain parameters: quadratic stability can be ascertained solving simultaneously 29=512 LMIs

Example - 4 ----

- Sequential algorithm:
 - Initial point Q_0 randomly selected
 - -800 random matrices Δ^k
 - The algorithm converged to

$$Q = \begin{bmatrix} 0.7560 & -0.0843 & 0.1645 & 0.7338 \\ -0.0843 & 1.0927 & 0.7020 & 0.4452 \\ 0.1645 & 0.7020 & 0.7798 & 0.7382 \\ 0.7338 & 0.4452 & 0.7382 & 1.2162 \end{bmatrix}$$

Example - 5

- The corresponding controller
 - $K = B^T Q^{-1} = \begin{bmatrix} 38.6191 & -4.3731 & 43.1284 & -49.9587 \end{bmatrix}$ -2.8814 -10.1758 10.2370 -0.4954 satisfies all the 512 vertex LMIs and therefore it is also a quadratic stabilizing controller in a deterministic sense
- The optimal LQ controller computed on the nominal plant satisfies only 240 vertex LMIs

IEIIT-CNF

Extensions

Related Literature and Extensions

- Minimization of a measure of violation for problems that are not strictly feasible^[1]
- Uncertainty in the control matrix, $B=B(\Delta)$, $\Delta \in \mathcal{B}_D$ We take the feedback law

$$u = YO^{-1}x$$

where Y and $Q=Q^T>0$ are design variables

[1] B.R. Barmish and P. Shcherbakov (1999)

NATO Lecture Series SCI-195

Related Literature

- Related literature on optimization and adaptive control with linear constraints^[1,2,3,4]
- Stochastic approximation algorithms have been widely studied in the stochastic control and optimization literature[6,7]

[1] S. Agmon (1954)

[2] T.S. Motzkin and I.J. Schoenberg (1954)[3] B.T. Polyak (1964)

[4] V.A. Bondarko and V.A. Yakubovich (1992)

[6] H.J. Kushner and G.G. Yin (2003)

[7] J.C. Spall (2003)

Subsequent Research

- _____ ■ Design of common Lyapunov functions for switched systems[1]
- From common to piecewise Lyapunov functions^[2]
- Ellipsoidal algorithm instead of gradient algorithm^[3]
- Stopping rule which provides the number of steps^[4]
- Other algorithms have been recently proposed^[5-6]
- [1] D. Liberzon and R. Tempo (2004) [2] H. Ishii, T. Basar and R. Tempo (2005) [3] S. Kanev, B. De Schutter and M. Verhaegen (2002)

- [4] Y. Oishi and H. Kimura (2003) [5] Y. Fujisaki and Y. Oishi (2007) [6] T. Alamo, R. Tempo, D. R. Ramirez and E. F. Camacho (2007)

IEIIT-CNR

Optimization Problems^[1]

- ■ Extensions to optimization problems
- Consider convex function f(x) and function $g(x,\Delta)$ convex in x for fixed Δ
- Semi-infinite (nonlinear) programming problem

 $\min f(x)$

 $g(x,\Delta) \le 0$ for all $\Delta \in \mathcal{B}$

- Reformulation as stochastic optimization
- Drawback: Convergence results are only asymptotic

[1] V. B. Tadic, S. P. Meyn and R. Tempo (2003)

Scenario Approach

- _____i ■ The scenario approach for convex problems^[1]
- Non-sequential method which provides a one-shot solution for general convex problems
- Randomization of $\Delta \in \mathcal{B}$ and solution of a single convex optimization problem
- Derivation of a bound on the sample size^[1]
- A new improved bound based on a pack-based strategy^[2]

[1] G. Calafiore and M. Campi (2004)

[2] T. Alamo, R. Tempo and E.F. Camacho (2007)

Convex Semi-Infinite Optimization

■ The semi-infinite optimization problem is

 $\min c^T \theta$ subject to $f(\theta, \Delta) \le 0$ for all $\Delta \in \mathcal{B}$

where $f(\theta, \Delta) \le 0$ is convex in θ for all $\Delta \in \mathcal{B}$

- We assume that this problem is either unfeasible or, if feasible, it attains a unique solution for all $\Delta \in \mathcal{B}$ (this assumption is technical and may be removed)
- We assume that $\theta \in \Theta \subseteq \mathbb{R}^n$

Scenario Problem

- _____ ■ Using randomization, we construct a scenario problem
- Taking random samples Δ^i , i = 1, 2, ..., N, we construct

 $f(\theta, \Delta^i) \le 0, \quad i = 1, 2, ..., N$

and

min $c^T \theta$ subject to $f(\theta, \Delta^i) \le 0$, i = 1, 2, ..., N

Theorem^[1]

■ Theorem: For any $\varepsilon \in (0,1)$ and $\delta \in (0,1)$, if

 $N \ge \left[\frac{2}{\varepsilon} \log(1/\delta) + 2n + \frac{2n}{\varepsilon} \log(2/\varepsilon) \right]$ then, with probability no smaller than 1- δ

- either the scenario problem is unfeasible and then also the semi-infinite optimization problem is unfeasible
- or, the scenario problem is feasible, then its optimal solution $\hat{\theta}_N$ satisfies

$$\Pr\{ \Delta \in \mathcal{B} : f(\theta, \Delta) > 0 \} \leq \mathcal{E}$$

[1] G. Calafiore and M. Campi (2004)

A New Improved Bound^[1]

.....

■ A new improved bound (based on a so-called packbased strategy) has been recently obtained

 $N \ge \left[2/\varepsilon \log(1/2\delta) + 2n + 2n/\varepsilon \log 4 \right]$

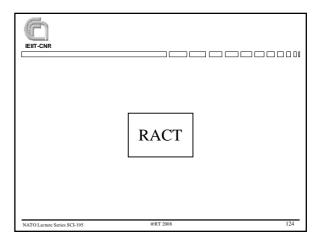
■ The main difference with the previous bound is that the

 $2n/\varepsilon \log (2/\varepsilon)$

is replaced with

 $2n/\varepsilon \log 4$

[1] T. Alamo, R. Tempo and E.F. Camacho (2007)



RACT

- RACT: Randomized Algorithms Control Toolbox for Matlab
- RACT has been developed at IEIIT-CNR and at the Institute for Control Sciences-RAS, based on a bilateral international project
- Members of the project

Andrey Tremba (Main Developer and Maintainer)

Giuseppe Calafiore

Fabrizio Dabbene

Elena Gryazina Boris Polyak (Co-Principal Investigator)

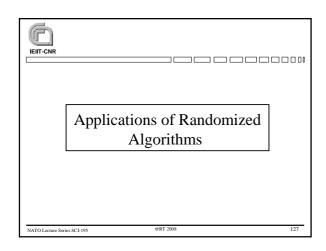
Pavel Shcherbakov

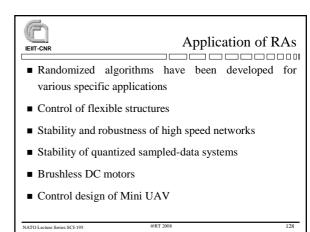
Roberto Tempo (Co-Principal Investigator)

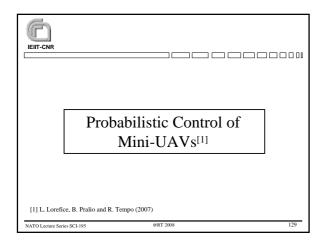
RACT

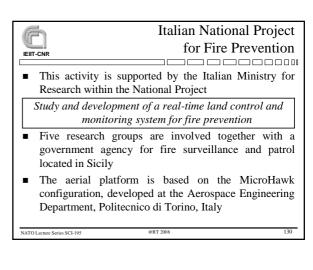
- Main features
- Define a variety of uncertain objects: scalar, vector and matrix uncertainties, with different pdfs
- Easy and fast sampling of uncertain objects of almost any type
- Randomized algorithms for probabilistic performance verification and probabilistic worst-case performance
- Randomized algorithms for feasibility of uncertain LMIs using stochastic gradient, ellipsoid or cutting plane methods (YALMIP needed)

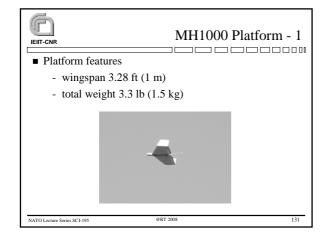
NATO Lecture Series SCI-195

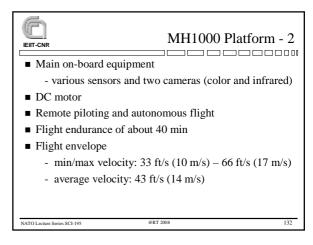


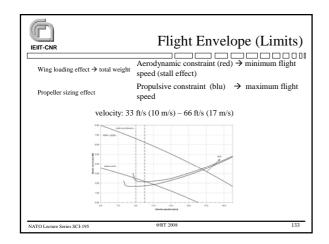


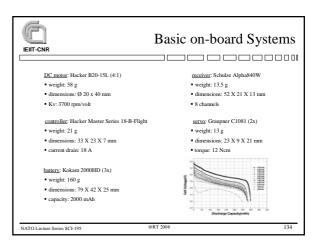


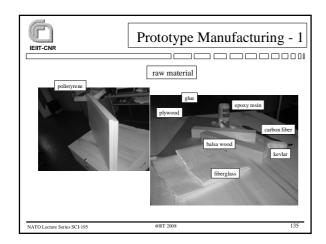


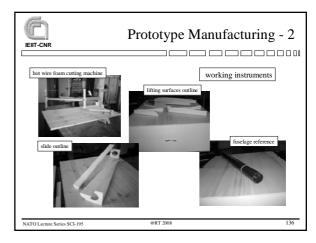


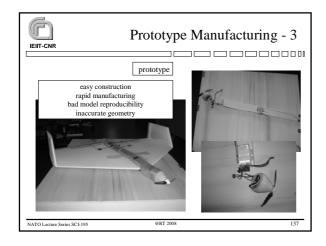


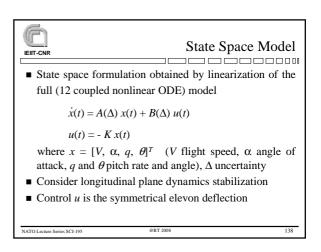












Uncertainty Description - 1

- We consider structured parameter uncertainties affecting plant and flight conditions, and aerodynamic database
- Uncertainty vector $\Delta = [\delta_1, ..., \delta_{16}]$ where $\delta_i \in [\delta_i^-, \delta_i^+]$
- Key point: There is no explicit relation between state space matrices A and B and uncertainty Δ
- This is due to the fact that state space system is obtained through linearization and off-line flight simulator
- The only techniques which could be used in this case are simulation-based which lead to randomized algorithms

NATO Lecture Series SCI-195

@RT 2008

IEIT-CNR

Uncertainty Description - 2

- We consider random uncertainty $\Delta = [\delta_1, ..., \delta_{16}]^T$
- The pdf is either uniform (for plant and flight conditions) or Gaussian (for aerodynamic database uncertainties)
- Flight conditions uncertainties need to take into account large variations on physical parameters
- Uncertainties for aerodynamic data are related to experimental measurement or round-off errors

NATO Lecture Series SCI-195

@RT 2008

140

Plant and Flight Condition Uncertainties

parameter	pdf	$\overline{\delta_i}$	%	δ_i^{-}	$\delta_i^{\scriptscriptstyle +}$	#
flight speed [ft/s]	U	42.65	± 15	36.25	49.05	1
altitude [ft]	U	164.04	± 100	0	328.08	2
mass [lb]	U	3.31	± 10	2.98	3.64	3
wingspan [ft]	U	3.28	± 5	3.12	3.44	4
mean aero chord [ft]	U	1.75	± 5	1.67	1.85	5
wing surface [ft ²]	U	5.61	± 10	5.06	6.18	6
moment of inertia [lb ft2]	U	1.34	± 10	1.21	1.48	7

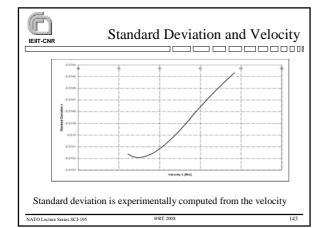
NATO Lecture Series SCI-195 @RT 2008 141

Aerodynamic Database Uncertainties

parameter	pdf	$\overline{\delta_{i}}$	σ_{i}	#
C_X [-]	G	-0.01215	0.00040	8
C _z [-]	G	-0.30651	0.00500	9
C _m [-]	G	-0.02401	0.00040	10
C_{Xq} [rad-1]	G	-0.20435	0.00650	11
C_{Zq} [rad-1]	G	-1.49462	0.05000	12
C_{mq} [rad-1]	G	-0.76882	0.01000	13
C_X [rad-1]	G	-0.17072	0.00540	14
C_Z [rad-1]	G	-1.41136	0.02200	15
C_m [rad-1]	G	-0.94853	0.01500	16

O Leature Series SCI 105 @RT 2008

@RT 2008 142



Critical Parameters and Matrices

- We select flight speed (δ_1) and take off mass (δ_3) as critical parameters
- Flight speed is taken as critical parameter to optimize gain scheduling issues
- Take off mass is a key parameter in mission profile definition
- We define critical matrices

 $A_c^{\ 1}$ $A_c^{\ 2}$ $A_c^{\ 3}$ $A_c^{\ 4}$ $B_c^{\ 1}$ $B_c^{\ 2}$ $B_c^{\ 3}$ $B_c^{\ 4}$

■ They are constructed setting δ_1 , δ_3 to the extreme values δ_1 , δ_1^+ , δ_1^+ , δ_3^+ and all the remaining δ_i are equal to $\overline{\delta_i}$

NATO Lecture Series SCI-195

@RT 2008

144

Phase 1: Random Gain Synthesis (RGS)

- ■ Critical parameters are flight speed and take off mass
- Specification property

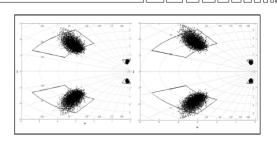
$$S_1 = \{K: A_c - B_c K \text{ satisfies the specs below}\}$$

 $\omega_{SP} \in [4.0, 6.0] \text{ rad/s}$ $\zeta_{SP} \in [0.5, 0.9]$ $\omega_{PH} \in [1.0, 1.5] \text{ rad/s}$ $\zeta_{PH}\in[0.1,\!0.3]$ $\Delta\omega_{PH} < \pm~20\%$ $\Delta\omega_{SP}$ < \pm 45%

where ω and ζ are undamped natural frequency and damping ratio of the characteristic modes; SP and PH denote short period and phugoid mode

NATO Lecture Series SCI-195

Specs in the Complex Plane



Volume of the Good Set

■ Define a bounding set *B* of gains *K* _____

$$B = \{K: k_i \in [k_i, k_i], i = 1,...,4\}$$

■ Define the volume of the *good set*

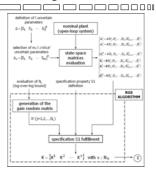
$$\operatorname{Vol}_{good} = \int_A dK$$

where $A = \{ K \in B \cap S_1 \}$

• Vol_B is simply the volume of the hyperrectangle B

Randomized Algorithm 1 (RGS)

- Uniform pdf for controller gains K in given intervals
- Accuracy and confidence ϵ =4 ·10⁻⁵ and δ = 3 · 10⁻⁴
- Number of random samples is computed with "Log-over-Log" Bound obtaining N = 200,000
- We obtained 5 gains K^i satisfying specification property S_1



Randomized Algorithm 1 (RGS)

Given ϵ , $\delta \in (0,1)$, RGS returns the set of gains $\{K^1, ..., K^s\}$ satisfying S_1

- Compute N using the Log-over-log Bound;
- For fixed j=1,2,...,N, generate uniformly the gain random matrix $K^{j} \in B$;
- Set *C*=0;
- For fixed i=1,2,3,4, compute the closed-loop matrix $A_{c^i}(K^j) = A_{c^i}^i B_{c^i}^i K^j;$ $\text{if } K^j \in S_1, \text{ set } C = C+1;$

- otherwise, set C = C;

- 5. End;
- If C = 4, return the gain K^{j} ;
- Set j = j+1 and return to Step 2;

Random Gain Set _____

gain set	K_V	K_{α}	K_q	K_{θ}
K^1	0.00044023	0.09465000	0.01577400	-0.00473510
K ²	0.00021450	0.09581200	0.01555500	-0.00323510
K ³	0.00054999	0.09430800	0.01548200	-0.00486340
K ⁴	0.00010855	0.09183200	0.01530000	-0.00404380
K ⁵	0.00039238	0.09482700	0.01609300	-0.00417340

Phase 2: Random Stability Robustness Analysis (RSRA) _____

- Take $K_{rand} = K^i$ obtained in Phase 1
- lacktriangledown Randomize Δ according to the given pdf and take Nrandom samples Δ^i
- Specification property

$$S_2 = \{\Delta: A(\Delta) - B(\Delta) \mid K_{rand} \text{ satisfies the specs of } S_1\}$$

■ Computation of the empirical probability of stability \hat{p}_N

NATO Lecture Series SCI-195

Empirical Probability

- Consider fixed gain K_{rand}
- Define the probability

$$p_{mn} = \int_C p(\Delta) d\Delta$$

 $p_{rue} = \int_{\mathcal{C}} p(\Delta) d \Delta$ where $\mathcal{C} = \{ \Delta \in B \cap S_2 \}$ and $p(\Delta)$ is the given pdf

Then, we introduce a "success" indicator function

$$I(\Delta i) = 1 \text{ if } \Delta i \in S_2$$

or $I(\Delta^{i}) = 0$ otherwise

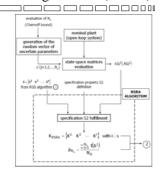
■ The empirical probability for S_2 is given by

$$\hat{p}_N = N_{good}/N$$

where N_{good} is equal to the number of successes

Randomized Algorithm 2 (RSRA)

- Take K_{rand} from Phase 1
- Accuracy and confidence $\varepsilon = \delta = 0.0145$
- Number of random samples is computed with Chernoff Bound obtaining N = 5,000
- Empirical probability is defined using an indicator function



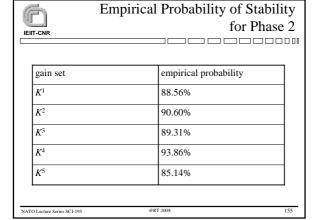
IEIIT-CNF

Randomized Algorithm 2 (RSRA)

Given ε , $\delta \in (0,1)$, RSRA returns the empirical probability \hat{p}_N that S_2 is satisfied for a gain K_{rand} provided by Algorithm 1

- Compute N using the Chernoff Bound;
- 2. Generate N random vectors $\Delta \in B$ according to the given pdf;
- 3. For fixed j=1,2,...,N, compute the closed-loop matrix $A_{c,l}(\Delta^l) = A(\Delta^l) - B(\Delta^l)K_{rand},$ - if $A_{c,l}(\Delta^l) \in S_2$, set $I(\Delta^l) = 1$; - otherwise.

 - otherwise, set $I(\Delta \vec{v}) = 0$;
- 4. End:
- 5. Return the empirical probability \hat{p}_N



Probability Degradation Function

■ Flight condition uncertainties are multiplied by the amplification factor $\rho > 0$ keeping the nominal value constant

 $\delta_i \in \rho \left[\delta_i^-, \delta_i^+ \right] \quad \text{for } i = 1, 2, ..., 7$

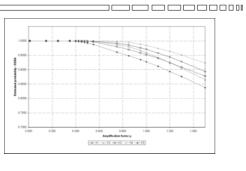
■ No uncertainty affects the aerodynamic database, i.e.

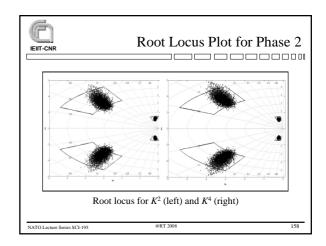
 $\delta_i = \overline{\delta_i}$ for i = 8, 9, ..., 16

- For fixed $\rho \in [0,1.5]$ we compute the empirical probability for different gain sets K^i
- The plot empirical probability vs ρ is the probability degradation function

26

Probability Degradation Function for Phase 2





Phase 3: Random Performance Robustness Analysis (RPRA)

- This phase is similar to Phase 2, but military specs are considered (bandwidth criterion)
- Specification property

 $S_3 = \{\Delta: A(\Delta) - B(\Delta) \mid K_{rand} \text{ satisfies the specs below}\}$

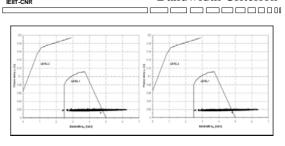
 $\omega_{BW} \in [2.5,5.0] \text{ rad/s}$ $\tau_P \in [0.0,0.5] \text{ s}$

where ω_{BW} and τ_{P} are bandwidth and phase delay of the frequency response

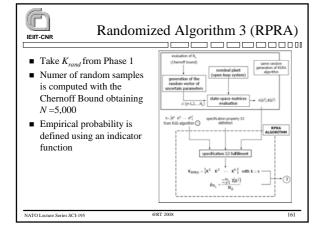
lacksquare Computation of the empirical probability that S_3 is satisfied

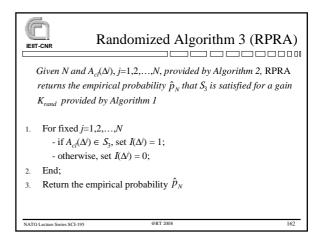
NATO Lecture Series SCI-195 @RT 2008 159

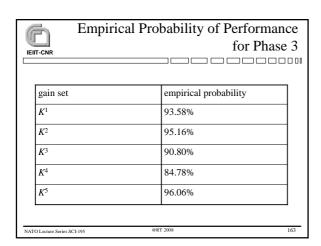
Bandwidth Criterion

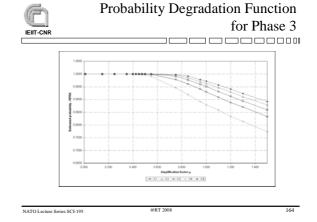


NATO Lecture Series SCI-195 @RT 2008 160

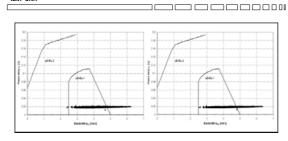






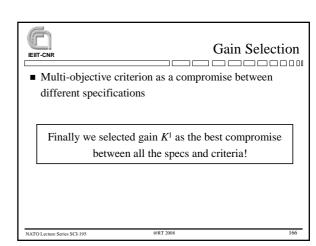


Bandwidth Criterion for Phase 3



Bandwidth criterion for K^1 (left) and K^3 (right)

NATO Lecture Series SCI-195 @RT 2008 165



Conclusions: Flight Tests in Sicily - 1

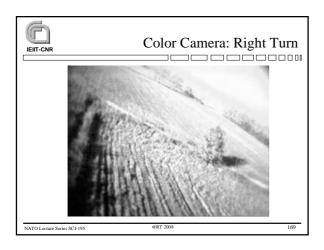
- Evaluation of the payload carrying capabilities and autonomous flight performance
- Mission test involving altitude, velocity and heading changing was performed in Sicily
- Checking effectiveness of the control laws for longitudinal and lateral-directional dynamics
- Flight control design based on RAs for stabilization and guidance

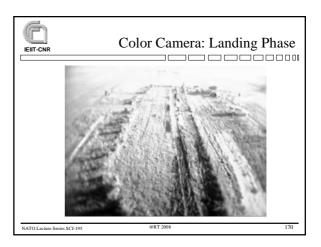
NATO Lecture Series SCI-195 @RT 2008 167

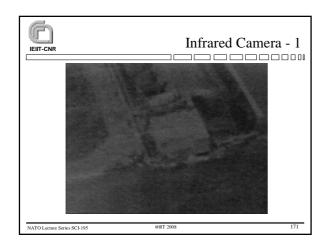
Conclusions: Flight Tests in Sicily - 2

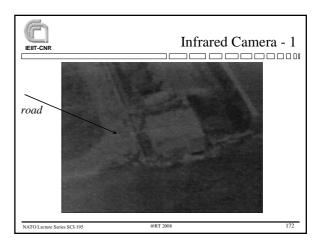
- Satisfactory response of MH1000
- Possible improvements by iterative design procedure
- Stability of the platform is crucial for the video quality and in the effectiveness of the surveillance and monitoring tasks

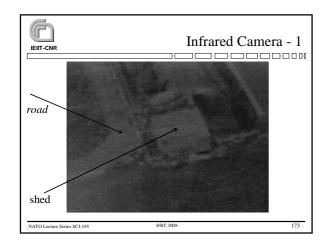
O Lecture Series SCL195 @RT 2008

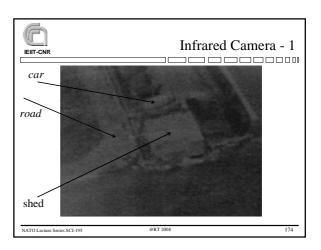


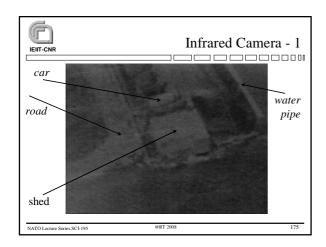


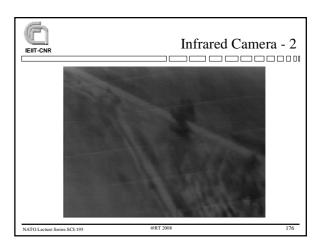


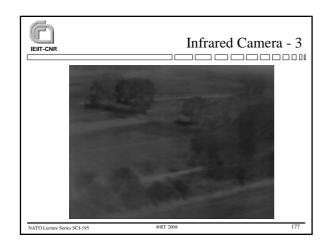


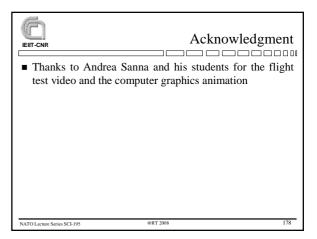


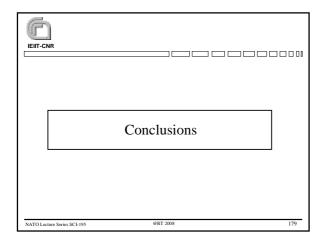


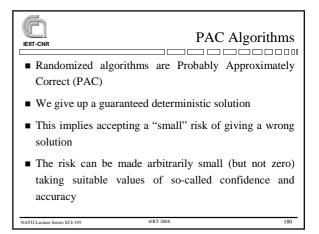












■ Two open problems	PAC Algorithms
 Optimization with sequential met Derive "reasonable" bounds for theory approach 	